Discrepancy, separation and Riesz energy of finite point sets on compact connected Riemannian manifolds
نویسنده
چکیده
On a smooth compact connected d-dimensional Riemannian manifold M , if 0< s < d then an asymptotically equidistributed sequence of finite subsets of M that is also well-separated yields a sequence of Riesz s-energies that converges to the energy double integral, with a rate of convergence depending on the geodesic ball discrepancy. This generalizes a known result for the sphere.
منابع مشابه
The Structure of Compact Ricci-flat Riemannian Manifolds
where k is the first Betti number b^M), T is a flat riemannian λ -torus, M~ is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of fixed point free isometries of T x M' of a certain sort (Theorem 4.1). This extends Calabi's result on the structure of compact euclidean space forms ([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to essentiall...
متن کاملMinimal Discrete Energy Problems and Numerical Integration on Compact Sets in Euclidean Spaces
In this paper, we announce and survey recent results on (1) point energies, scar defects, separation and mesh norm for optimal N ≥ 1 arrangments of points on a class of d-dimensional compact sets embedded in R, n ≥ 1, which interact through a Riesz potential, and (2) discrepancy estimates of numerical integration on the d-dimensional unit sphere S, d ≥ 2.
متن کاملDiscrepancy, separation and Riesz energy of point sets on the unit sphere
When does a sequence of spherical codes with “good” spherical cap discrepancy, and “good” separation also have “good” Riesz s-energy? For d > 2 and the Riesz s-energy for 0 < s < d, we consider asymptotically equidistributed sequences of S codes with an upper bound δ on discrepancy and a lower bound ∆ on separation. For such sequences, the difference between the normalized Riesz s-energy and th...
متن کاملDiscrepancy, separation and Riesz energy of finite point sets on the unit sphere
For d > 2, we consider asymptotically equidistributed sequences of Sd codes, with an upper bound δ on spherical cap discrepancy, and a lower bound ∆ on separation. For such sequences, if 0 < s < d, then the difference between the normalized Riesz s energy of each code, and the normalized s-energy double integral on the sphere is bounded above by O ( δ 1−s/d ∆−s N−s/d ) , where N is the number o...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014